Trend and Variability of Pineapple Express Events Depicted by Seven Global Reanalysis Datasets

Martin Schroeder Utah Climate Center

Simon Wang and Robert Gillies
Utah Climate Center / Department of Plant, Soils, Climate
Utah State University

Two types of Atmospheric River:

← Zonal/Midlatitude

← Pineapple Express

Any Change?

- Global warming → tropical belt widening → moisture increase
- ▶ → Pineapple Express frequency?

Reanalysis: Pros and Cons

Uniform / global coverage (✔)

Changing observations/computer systems (*)

→ Questionable trend analysis

Thus we need multiple reanalyses

- 1.NCEP/DOE Reanalysis I
- 2.NCEP/NCAR Reanalysis II
- 3.NOAA-CIRES 20th Century Reanalysis V2 (20CR)
- 4.ECMWF Interim Reanalysis (ERA-Interim)
- 1.NASA Modern Era Reanalysis for Research and Applications (MERRA)
- 2.NCEP Climate Forecast System Reanalysis (CFSR)
- 1. JRA-25 (not there yet)

Northern California High-Impact Cases:

11–24 February, 1986 (Leung and Qian 2009)

29 December, 1996 – 4 January, 1997 (Galewsky, J., A. Sobel, 2005)

16–18 February, 2004 (Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006)

29 December, 2005 – 2 January, 2006 (Smith, B.L., S.E. Yuter, P.J. Neiman, and D.E. Kingsmill, 2010)

Column water vapor flux & its streamfunction →

Precipitation (USMEX) →

Composite PE events from multiple (6) Reanalyses

PE identification: Procedure

1.PE Index

2.PE pattern

Requisite conditions:

- (Z-mean>0),
- (Uq>75, Vq>50), (Uq>75, Vq>0)
 (upstream) (downstream)

FOR 2 OR MORE CONSECUTIVE DAYS

PE identification: Procedure

1.PE Index

2.PE pattern

Winter Mean Precipitation Trend in Northern California (Oct-Apr)

Declining Trend in Winter Precipitation (N.CA)

What accounts for the residual?

* Precip came from USMEX based on reanalysis "dates"

Identify other synoptic patterns

- Used ensemble of six reanalyses, daily means.
- Manual identification for multiple storm types.

Identify other synoptic patterns

Climatology

Trends: 1979-2010

% contribution

Trend in storm type (%)

Possible Mechanisms:

Winter U (200mb) 145 ° W Longitude

Possible Mechanisms:

Big Picture

- The widening of the tropical moisture band may lead to an increase in moisture availability for Pineapple Express storms.
- However, this does not translate into an increase in precipitation from Pineapple Express storms. Contrarily, precipitation linked to these storms is decreasing over northern California
- A northerly shift in the upper-level winter jet over the flux region coincides with the decrease in Pineapple Express storms and total winter precipitation in northern California.

Future Work

 Identify what effect the northerly shift and weakening of the winter jet may have on Pineapple Express contributions in southern California and the Pacific Northwest.

Thank You! QUESTIONS?

References:

Leung L. R, and Y. Qian, 2009. Atmospheric rivers induced heavy precipitation and flooding in the Western U.S. simulated by the WRF regional climate model. *Geophys. Res. Lett.*, 36, L03820, doi:10.1029/2008GL036445.

Galewsky, J., A. Sobel, 2005: Moist dynamics and orographic precipitation in northern and central California during the New Year's Flood of 1997. *Mon. Wea. Rev.*, 133, 1594-1612, doi:10.1175/MWR2943.1.

Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California's Russian River: Role of atmospheric rivers. *Geophys. Res. Lett.*, 33, L13801, doi:10.1029/2006GL026689.

Smith, B.L., S.E. Yuter, P.J. Neiman, and D.E. Kingsmill, 2010: Water vapor fluxes and orographic precipitation over northern California associated with a land-falling atmospheric river. *Mon. Wea. Rev.*, 138, 74-100, doi:10.1175/2009MWR2939.1.

Dettinger, M. (2011), Climate Change, Atmospheric Rivers, and Floods in California – A Multimodel Analysis of Storm Frequency and Magnitude Changes. JAWRA Journal of the American Water Resources Association, 47: 514–523. doi: 10.1111/j.1752-1688.2011.00546.x